
A Survey of Two Signature Aggregation Techniques

Dan Boneh
dabo@cs.stanford.edu

Craig Gentry
cgentry@docomolabs-usa.com

Ben Lynn
blynn@cs.stanford.edu

Hovav Shacham
hovav@cs.stanford.edu

Abstract

We survey two recent signature constructions that sup-
port signature aggregation: Given n signatures on n
distinct messages from n distinct users, it is possible to
aggregate all these signatures into a single signature.
This single signature (and all n original messages) will
convince any verifier that the n users signed the n orig-
inal messages (i.e., for i = 1, . . . ,n user i signed mes-
sage number i). We survey two constructions. The
first is based on the short signature scheme of Boneh,
Lynn, and Shacham and supports general aggrega-
tion. The second, based on a multisignature scheme
of Micali, Ohta, and Reyzin, is built from any trap-
door permutation but only supports sequential aggre-
gation. Aggregate signatures are useful for reducing
the size of certificate chains (by aggregating all sig-
natures in the chain) and for reducing message size in
secure routing protocols such as SBGP.

1 Introduction

Security systems often manage signatures on many
different messages generated by many different users.
For example, in a Public Key Infrastructure (PKI)
of depth n, user signatures are accompanied by a
chain of n certificates. The chain contains n sig-
natures by n Certificate Authorities (CAs) on n dis-

tinct certificates. Similarly, in the Secure BGP proto-
col (SBGP) [16] each router receives a list of n sig-
natures attesting to a certain path of length n in the
network. A router signs its own segment in the path
and forwards the resulting list of n + 1 signatures to
the next router. As a result, the number of signatures
in routing messages is linear in the length of the path.
Both systems would benefit from a method for com-
pressing the list of signatures on distinct messages
issued by distinct parties. For example, certificate
chains could be shortened by compressing the n signa-
tures in the chain into a single signature. Note that one
would still need to store the data in all certificates in
the chain — only the signatures in the chain are com-
pressed.

An aggregate signature scheme enables us to
achieve precisely this type of compression. In this pa-
per we survey two mechanisms for signature aggrega-
tion: general aggregation and sequential aggregation.
We assume each of n users has a public-private key
pair (PKi,SKi). User i wishes to sign message Mi.

General aggregate signatures. In a general signa-
ture aggregation scheme each user i signs her mes-
sage Mi to obtain a signature σi. Then anyone can
use a public aggregation algorithm to take all n signa-
tures σ1, . . . ,σn and compress them into a single sig-
nature σ. Moreover, the aggregation can be performed
incrementally — signatures σ1,σ2 can be aggregated

1

into σ12 which can then be further aggregated with
σ3 to obtain σ123, and so on. There is also an ag-
gregate verification algorithm that takes PK1, . . . ,PKn,
M1, . . . ,Mn, and σ and decides whether the aggregate
signature is valid. Thus, an aggregate signature pro-
vides non-repudiation at once on many different mes-
sages by many users. We refer to this mechanism as
general aggregation since aggregation can be done by
anyone and without the cooperation of the signers.
In the next section we describe a general aggregate
signature scheme due to Boneh, Gentry, Lynn, and
Shacham [5]. The scheme uses bilinear maps from
algebraic geometry.

Sequential aggregate signatures. In a sequential
aggregation scheme, signature aggregation can only
be done during the signing process. Each signer in
turn sequentially adds her signature to the current ag-
gregate. Thus, there is an explicit order imposed on
the aggregate signature and the signers must commu-
nicate with each other during the aggregation process.
Operationally, sequential aggregation works as fol-
lows: User 1 signs M1 to obtain σ1; user 2 then com-
bines σ1 and M2 to obtain σ2; and so on. The final
signature σn binds user i to Mi for all i = 1, . . . ,n. In
Section 3 we describe a sequential aggregate signature
scheme based on homomorphic trapdoor permutations
such as RSA. The scheme is based on a multisignature
scheme due to Micali, Ohta, and Reyzin [19] and ana-
lyzed in [27].

Although general aggregation is more powerful
than sequential aggregation, the fact that sequential
aggregation can be built from standard primitives such
as RSA has its benefits. Interestingly, either mecha-
nism can be used for compressing signatures in a cer-
tificate chain.

Aggregate signatures are related to multisigna-
tures [24, 23, 20, 3]. In multisignatures, a set of users
all sign the same message and the result is a single
signature. Recently, Micali, Ohta, and Reyzin [20],

presented a clear security model and new construc-
tions for multisignatures. Another efficient construc-
tion was presented by Boldyreva [3]. Multisignatures
are insufficient for the applications we have in mind,
such as certificate chains and SBGP. For these appli-
cations we must be able to combine signatures on dis-
tinct messages into an aggregate.

The application of aggregate signatures to com-
pressing certificate chains is related to an open prob-
lem posed by Micali and Rivest [21]: Given a certifi-
cate chain and some special additional signatures, can
intermediate links in the chain be cut out? Aggregate
signatures allow the compression of certificate chains
without any additional signatures, but a verifier must
still be aware of all intermediate links in the chain.

2 General Aggregate Signatures

In a general aggregate signature scheme, signatures
are generated by individual users. They can then be
combined into an aggregate signature by some aggre-
gating party. The aggregating party need not be one
of the users, and need not be trusted by them. Every
aggregate signature scheme is a generalization of an
ordinary signature scheme. An aggregate signature is
the same length as an ordinary signature in the under-
lying scheme.

The aggregation algorithm takes as input signa-
tures σ1, . . . ,σn on respective messages M1, . . . ,Mn

under respective public keys PK1, . . . ,PKn. (The as-
signment of indices is arbitrary.) It outputs a single
aggregate signature σ.

The aggregate verification algorithm, given an ag-
gregate signature σ, messages M1, . . . ,Mn, and public
keys PK1, . . . ,PKn, verifies that σ is a valid aggregate
signature on the given messages under the given keys.

2

2.1 Bilinear Maps

We start by reviewing the mathematical underpinnings
of general aggregate signatures: Gap Diffie-Hellman
groups and bilinear groups. Gap Diffie-Hellman
groups arise from a separation between Computa-
tional and Decision Diffie-Hellman. Bilinear groups
arise from the presence of a bilinear map, a function
with certain properties.

Consider a multiplicative cyclic group G of prime
order p, with generator g. On this group, the familiar
Diffie-Hellman problems proceed as follows.

Computational Diffie-Hellman (CDH). Given
g,ga,h ∈ G, compute ha ∈ G.

Decision Diffie-Hellman (DDH). Given g,ga,h,hb ∈
G, decide whether a equals b. Tuples of
this form — (g,ga,h,ha) — are termed Diffie-
Hellman tuples.

Loosely stated, the CDH assumption is that it is com-
putationally infeasible to solve random instances of
the CDH problem; the DDH assumption is similarly
defined.

GDH Groups. For many choices of group G, such
as subgroups of Z

∗
q, both the CDH and DDH assump-

tions are believed to hold. As we will see, however,
on certain elliptic-curve groups, the DDH problem is
easy to solve, whereas CDH is believed hard [6, 22].
We term groups that have this property Gap Diffie-
Hellman (GDH) groups. GDH is an instance of a
family of gap problems discussed by Okamoto and
Pointcheval [25].

Bilinear groups. Currently, the only known exam-
ples of GDH groups have additional structure, namely,
a bilinear map. A bilinear map is a map e : G×G→

GT — where GT is another multiplicative cyclic group
of prime order p — with the following properties:

• Computable: there exists an efficiently-
computable algorithm for computing e(u,v), for
all u,v ∈ G.

• Bilinear: for all u,v ∈G and a,b ∈ Z, e(ua,vb) =
e(u,v)ab.

• Non-degenerate: e(g,g) 6= 1.

A bilinear group is any group that possesses such a
map e, and on which CDH is hard.

Joux and Nguyen [15] noted that a bilinear map e
provides an algorithm for solving DDH. For a tuple
(g,ga,h,hb) we have

a = b mod p ⇐⇒ e(h,ga) = e(hb,g) .

Consequently, if a group G is a bilinear group then
G is also a GDH group. (The converse is probably not
true.)

We now describe the elliptic curve groups men-
tioned above. Let E/Fq be an elliptic curve, and let
G be a subgroup (of prime order p) of the curve’s
group of points E(Fq). On certain curves, the Weil
and modified Tate pairings [14, 12, 13] yield a bilin-
ear map e : G×G→ GT . The target group GT is a
subgroup of Fqα , where α is a security multiplier that
depends on the curve and on the group G.

The multiplier α provides a tradeoff between ef-
ficiency and security. The smaller the value of α,
the faster is the computation of the bilinear map; the
larger the value of α, the more difficult is the CDH
problem on G. Current CDH algorithms on G re-
quire solving the discrete logarithm problem either in
the generic group G (of order p) or in the finite field
Fqα [17, 18]. We note that members of the MNT fam-
ily of curves [22] have large subgroups with security
multiplier α = 6, which is suitable for our needs.

3

2.2 The BLS Signature Scheme

We now describe the BLS short signature scheme. The
scheme works in any Gap Diffie-Hellman group G. It
requires, in addition, a hash function from the mes-
sage space onto the group G. The scheme is related to
the undeniable signature scheme of Chaum and Ped-
ersen [7].

Specifically, let G = 〈g〉 be a GDH group of prime
order p, with a hash function H : {0,1}∗→G, viewed
as a random oracle [2]. Any string can be signed; a
signature is a single element of G. The scheme com-
prises the three algorithms below.

Key Generation. Pick random x
R
← Zp and compute

v← gx. The public key is v ∈ G. The private key
is x ∈ Zp.

Signing. Given a private key x and a message M ∈
{0,1}∗, compute h← H(M), where h ∈ G, and
σ← hx. The signature is σ ∈ G.

Verification. Given a public key v, a message M, and
a signature σ, compute h←H(M) and verify that
(g,v,h,σ) is a valid Diffie-Hellman tuple.

The intuition is: On a correct signature, v = gx, and
σ = hx, so (g,v,h,σ) is a Diffie-Hellman tuple. This
establishes the validity of the scheme. Its security
against existential forgery under a chosen message at-
tack can be shown based on the CDH assumption in
G [6].

Signature length. Points on an elliptic curve group
G < E(Fq) are usually represented as a pair (x,y) of
elements of Fq, but BLS remains valid and secure even
if only the x-coordinate of every signature point σ∈G
is transmitted. Thus, on an MNT curve (with α = 6)
over a 170-bit field, BLS signatures are 170 bits long,
and provide security comparable to that of 1024-bit

RSA [26, 4] or 320-bit DSA [11]. In other words, BLS
signatures are half the size of DSA with comparable
security.

Because of their simple mathematical structure,
BLS signatures are amenable to a variety of exten-
sions, including threshold signatures, multisignatures,
and blind signatures [3].

2.3 Bilinear Aggregate Signatures

We now describe the bilinear aggregate signature
scheme [5]. Unlike the BLS signature scheme on
which it is based, the bilinear aggregate signature
scheme requires the group G to be a bilinear group —
a general Gap Diffie-Hellman group is insufficient. As
in the BLS scheme, any string can be signed. The
scheme employs a random oracle hash function, but
one that takes both a string and an element of G as
input: H : G×{0,1}∗→ G.

The bilinear aggregate signature scheme enables
general aggregation. An arbitrary aggregating party
unrelated to, and untrusted by, the original signers
can combine pre-existing signatures into an aggregate.
The system does not impose an order on the aggre-
gated elements. Note that, when needed, an order can
be imposed by prepending index numbers to the mes-
sages being signed.

For notational convenience, we number the users
whose signatures are aggregated 1,2, . . . ,n in the de-
scription below. This numbering is arbitrary. The
number of signatures n in an aggregate is effectively
unbounded (viz., polynomial in the security parame-
ter).

The scheme includes the three usual algorithms for
generating and verifying individual signatures, as well
as two additional algorithms that provide the aggrega-
tion capability.

4

Key Generation. For a particular user, pick random

x
R
← Zp, and compute v← gx. The user’s public

key is v ∈ G. The user’s private key is x ∈ Zp.

Signing. For a particular user, given the public key v,
the private key x, and a message M ∈ {0,1}∗,
compute h←H(v,M), where h ∈G, and σ← hx.
The signature is σ ∈ G.

Verification. Given a user’s public key v, a mes-
sage M, and a signature σ, compute h←H(v,M);
accept if e(σ,g) = e(h,v) holds.

Aggregation. Arbitrarily assign to each user whose
signature will be aggregated an index i, rang-
ing from 1 to n. Each user i provides a signa-
ture σi ∈ G on a message Mi ∈ {0,1}∗ of her
choice. Compute σ← ∏n

i=1 σi. The aggregate
signature is σ ∈ G.

Aggregate Verification. We are given an aggregate
signature σ ∈ G for a set of users, indexed as be-
fore, and are given the original messages Mi ∈
{0,1}∗ and public keys vi ∈ G. To verify the ag-
gregate signature σ, compute hi← H(vi,Mi) for
1 ≤ i ≤ n, and accept if e(σ,g) = ∏n

i=1 e(hi,vi)
holds.

The test employed in the verification of individual sig-
natures is the same DDH test used in BLS verification,
but rewritten in bilinear-map notation. Note that a bi-
linear aggregate signature, like a BLS signature, is a
single element of G. Unlike in BLS, the signing pro-
cess signs both the message and the user’s public key.

The intuition behind bilinear aggregate signatures
is as follows. User i has a private key xi ∈ Zp and
a public key vi = gxi . User i’s signature, if correctly
formed, is σi = hxi

i , where hi is the hash of the user’s
chosen message, Mi, along with her public key vi. The
aggregate signature σ is thus σ = ∏i σi = ∏i hxi

i . Using
the properties of the bilinear map, the left-hand side of
the verification equation expands:

e(σ,g) = e
(

∏i hxi
i ,g

)

= ∏i e(hi,g)xi

= ∏i e(hi,g
xi)

= ∏i e(hi,vi) ,

which is the right-hand side, as required. This estab-
lishes the validity of the scheme; its security against
forgery can be demonstrated. Even when the would-
be forger possesses all but one of the private keys, he
cannot frame the remaining honest user. See [5] for
the exact security model and proof of security based
on CDH in G.

Incremental Aggregation. Consider an aggregate
signature σ on messages M1, . . . ,Mn under public
keys v1, . . . ,vn. An additional signature σn+1 (on a
message Mn+1 under public key vn+1) can be folded
into the aggregate: σ′ ← σ ·σn+1. If some signature
σ j included in σ is known, it can be removed from
the aggregate: σ′← σ/σ j. If, however, only the mes-
sages, public keys, and the aggregate signature σ are
known, recovering the individual signatures σ1, . . . ,σn

from the aggregate is hard. This hardness assump-
tion, the basis for other signature constructions [5],
was shown by Coron and Naccache to be equivalent
to Computational Diffie-Hellman [10].

3 Sequential Aggregate Signatures

Sequential aggregate signatures are a variant of aggre-
gate signatures. In a sequential aggregate signature
scheme, signatures are not individually generated and
then combined into an aggregate. Rather, a would-be
signer transforms a sequential aggregate into another
that includes a signature on a message of his choice.
Signing and aggregation are a single operation. Se-
quential aggregate signatures are built in layers, like
an onion; the first signature in the aggregate is the in-
most. As with general aggregate signatures, the re-
sulting sequential aggregate is the same length as an

5

ordinary signature. This behavior closely mirrors the
sequential nature of certificate chains in a PKI.

For sequential aggregate signatures, aggregation
and signing are performed in a single combined op-
eration. The operation takes as input a private key SK,
a message Mi to sign, and a sequential aggregate sig-
nature σ′ on messages M1, . . . ,Mi−1 under respective
public keys PK1, . . . ,PKi−1, where M1 is the inmost
message. It adds a signature on Mi under SK to the
aggregate, outputting a sequential aggregate σ on all i
messages M1, . . . ,Mi.

The aggregate verification algorithm, given a se-
quential aggregate signature σ, messages M1, . . . ,Mi,
and public keys PK1, . . . ,PKi, verifies that σ is a valid
sequential aggregate (with M1 inmost) on the given
messages under the given keys.

3.1 Trapdoor Homomorphic Permutations

Sequential aggregate signatures are built from trap-
door homomorphic permutations. We first review
trapdoor permutations and then describe the sequen-
tial aggregate scheme to which they give rise.

A permutation family Π is a collection of permuta-
tions of some domain D. Each permutation in Π has
a description s ∈ S. Anyone given a description s can
evaluate the corresponding permutation.

Loosely speaking, a permutation family is one-way
if, given a permutation description s, it is infeasible
to invert the corresponding permutation. A permuta-
tion family is trapdoor if each description s has some
corresponding trapdoor t ∈ T such that it is easy to
invert the permutation corresponding to s with t, but
infeasible without t. A trapdoor permutation family is
necessarily one-way. (Here S and T are arbitrary sets.)

More formally, a trapdoor permutation family Π
comprises three algorithms: Generate, Evaluate,

and Invert. The randomized generation algo-
rithm Generate outputs the description s ∈ S of a per-
mutation along with the corresponding trapdoor t ∈ T .
The evaluation algorithm Evaluate, given the permu-
tation description s and a value x ∈ D, outputs a ∈ D,
the image of x under the permutation. The inversion
algorithm Invert, given the permutation description s,
the trapdoor t, and a value a∈D, outputs the preimage
of a under the permutation.

We require that Evaluate(s, ·) be a permuta-

tion of D for all (s, t)
R
← Generate, and that

Invert(s, t,Evaluate(s,x)) = x hold for all (s, t)
R
←

Generate and for all x ∈ D.

A trapdoor permutation is homomorphic if D is a
group with some operation ∗ and if, for all (s, t) gener-
ated by Generate, the permutation π : D→ D induced
by Evaluate(s, ·) is an automorphism on D. That is, if
a = π(x) and b = π(y), then a∗b = π(x∗ y).

When it engenders no ambiguity, we consider the
output of the generation algorithm Generate as a
probability distribution Π on permutations, and write

(π,π−1)
R
←Π; here π is the permutation Evaluate(s, ·),

and π−1 is the inverse permutation Invert(s, t, ·).

It can happen that each permutation Evaluate(s, ·)
is over a different domain Ds. For example, the RSA
permutation family gives permutations over domains
Z
∗
N , where each user has a distinct modulus N. We

consider this further in Section 3.4. For now we as-
sume that all permutations in the family are over the
same domain D.

3.2 Full-domain signatures

We review the full-domain hash signature scheme.
The scheme, introduced by Bellare and Rogaway [1]
and further analyzed by Coron [8], works in any trap-
door permutation family.

6

Like the others discussed above, the full-domain
hash signature scheme employs a random-oracle hash
function H : {0,1}∗ → D. The hash function maps
bit strings into the entire domain D (rather than some
subset of D), a fact which gives the scheme its name.

Key Generation. For a particular user, pick random

(s, t)
R
← Generate. The user’s public key PK is s.

The user’s private key SK is (s, t).

Signing. For a particular user, given the private
key (s, t) and a message M ∈ {0,1}∗, compute
h← H(M), where h ∈ D, and σ← Invert(s, t,h).
The signature is σ ∈ D.

Verification. Given a user’s public key s, a mes-
sage M, and a signature σ, compute h← H(M);
accept if h = Evaluate(s,σ) holds.

These algorithms can also be described using the sim-
plified notation given above. A user signs a message
by publishing σ = π−1(H(M)); the signature is valid
if π(σ) = H(M) holds.

The signature scheme is secure against existential
forgery under a chosen message attack if Π is a trap-
door permutation family [1]. If Π is homomorphic as
well, then the security reduction can be made more
efficient [8].

3.3 Sequential Aggregate Signatures

We now describe the trapdoor sequential aggregate
signature scheme. The scheme is related to the full-
domain hash signature scheme, but must be instanti-
ated on a homomorphic trapdoor permutation. The
scheme is based on a multisignature scheme due to
Micali, Ohta, and Reyzin [19].

To simplify the presentation of the scheme, we
introduce some notation for vectors. We write a

vector as x, its length as |x|, and its elements as
x1,x2, . . . ,x|x|. We denote vector concatenation as x‖y
and appending an element to a vector as x‖z. For
a vector x, x|ba is the sub-vector containing elements
xa,xa+1, . . . ,xb. It is necessarily the case that 1≤ a≤
b≤ |x|.

Like the others, this scheme employs a full-
domain random-oracle hash function H mapping in-
puts into D. A signer provides to H every pub-
lic key and every message in the aggregate signa-
ture she is creating. Thus H is of the form H :
⋃∞

j=1

[

(S) j× ({0,1}∗) j
]

→ D.

Key Generation. For a particular user, pick random

(s, t)
R
← Generate. The user’s public key PK is s.

The user’s private key SK is (s, t).

Aggregate Signing. The input is a private key (s, t), a
message M ∈ {0,1}∗ to be signed, and a sequen-
tial aggregate signature σ′ on a vector of mes-
sages M under a vector of public keys s. No key
may appear twice in s. Furthermore, the vec-
tors M and s must have the same length. Let
i equal |M|. If i is 0, σ′ must equal 1, the unit
of D.
Compute h← H(s‖s,M‖M), where h ∈ D, and
σ← Invert(s, t,h∗σ′). The sequential aggregate
signature is σ ∈ D.

Aggregate Verification. The input is a sequential
aggregate signature σ on messages M under
public keys s, where |M| = |s| = i. To ver-
ify, set σi ← σ. Then, for j = i, . . . ,1, set
σ j−1 ← Evaluate(s j,σ j) ∗H(s| j1 , M| j1)

−1. Ac-
cept if σ0 equals 1.

Written using π-notation, a sequential aggregate
signature is of the form

π−1
i (hi ∗π−1

i−1(hi−1 ∗π−1
i−2(· · ·π

−1
2 (h2 ∗π−1

1 (h1)) · · ·))),

7

where h j = H(s| j1 , M| j1). Verification evaluates the
permutations in the forward direction, peeling layers
away until the center is reached.

The trapdoor sequential aggregate signature scheme
is secure against forgery, assuming Π is a homo-
morphic trapdoor permutation family. Even when
the would-be forger possesses all but one of the pri-
vate keys, he cannot frame the remaining honest user.
For the precise security model and proof of security
see [27].

3.4 Aggregating with RSA

We consider the details of instantiating the sequential
aggregate signature scheme presented above using the
RSA permutation family.

The RSA function was introduced by Rivest,
Shamir, and Adleman [26]. If N = pq is the product of
two large primes and ed = 1 mod φ(N), then π(x) =
xe mod N is a permutation on Z

∗
N , and π−1(x) =

xd mod N is its inverse. Setting s = (N,e) and t = (d)
gives a trapdoor permutation that is multiplicatively
homomorphic.

A difficulty arises since two users cannot share the
same modulus N. Thus the domains of the one-way
permutations belonging to the aggregating users dif-
fer, making it difficult to treat RSA as a family of trap-
door permutations. We give two approaches that allow
us to create sequential aggregate signatures from RSA
nonetheless. The first method imposes more restric-
tions on the choices of signing keys than the second.
Aggregate signatures created by the second method
grow by one bit per signature.

Suppose the n users have moduli N1, . . . ,Nn, with
N1 inmost. We assume that the moduli are approxi-
mately the same size, i.e., that blog2 N1c= blog2 N2c=
· · ·= blog2 Nnc. Let N be the minimum of N1, . . . ,Nn.
The hash function H maps into the set {1, . . . ,N−1};

hashes not in Z
∗
Ni

for some i can be dealt with by iter-
ating the hash, using the method given by Bellare and
Rogaway [1, Section 4].

In the first method, the moduli are constrained so
that N1 < N2 < · · · < Nn. A sequential aggregate sig-
nature σi under the keys with moduli N1, . . . ,Ni is
such that σi < Ni < Ni+1. Thus (except with neg-
ligibly small probability) σi is in the domain of the
permutation with modulus Ni+1. Letting πi(x) =
xei mod Ni, we can apply the sequential aggregate sig-
nature scheme of Section 3.3 otherwise unchanged.

In the second method, the moduli are not ordered
and increasing. It can then happen that σi is larger than
Ni+1. We deal with this by truncating σi so that it fits.
Let ` equal blog2 Nc. Then 2` < N1, . . . ,Nn < 2`+1.
Now, if some i-element sequential aggregate signa-
ture σi is such that σi ≥ 2`, we emit the bit bi ← 1
and continue aggregation using σ′i ← σi− 2`; other-
wise we emit the bit bi← 0 and continue aggregation
using σ′i ← σi. The n-bit vector b1, . . . ,bn can be ap-
pended to the sequential aggregate signature, which
then grows by a single bit per aggregating user, or it
can be omitted and recovered by an exhaustive search
of the 2n possibilities.

These two schemes are no longer full-domain hash
signature schemes, but, since the moduli are all ap-
proximately the same size, Coron’s partial-domain
hash analysis [9] applies to either.

4 Conclusions

We surveyed two techniques for signature aggrega-
tion. Both methods provide the ability to compress
multiple signatures by distinct signers on distinct mes-
sages into a single signature. The first method, based
on bilinear maps, provides general aggregation, where
anyone can combine signatures into an aggregate at
any time, without the cooperation of the signers. The

8

second method, based on homomorphic trapdoor per-
mutations such as RSA, provides only sequential ag-
gregation where aggregation must be done during the
signing process. General aggregation is more a power-
ful mechanism than sequential aggregation. For exam-
ple, sequential aggregation can be built from general
aggregation. Also, general aggregation seems easier
to use.

We discussed two applications for signature aggre-
gation: compressing certificate chains in a PKI and
compressing messages in secure routing protocols.
Both aggregation techniques are adequate for these
applications.

References

[1] M. Bellare and P. Rogaway. Random oracles
are practical: A paradigm for designing efficient
protocols. In D. Denning, R. Pyle, R. Ganesan,
R. Sandhu, and V. Ashby, editors, Proceedings
of CCS 1993, pages 62–73. ACM, 1993.

[2] M. Bellare and P. Rogaway. The exact security
of digital signatures: How to sign with RSA and
Rabin. In U. Maurer, editor, Proceedings of Eu-
rocrypt 1996, volume 1070 of LNCS, pages 399–
416. Springer-Verlag, 1996.

[3] A. Boldyreva. Efficient threshold signature, mul-
tisignature and blind signature schemes based on
the gap-Diffie-Hellman-group signature scheme.
In Y. Desmedt, editor, Proceedings of PKC 2003,
volume 2567 of LNCS, pages 31–46. Springer-
Verlag, 2003.

[4] D. Boneh. Twenty years of attacks on the RSA
cryptosystem. Notices of the AMS, 46(2):203–
13, 1999.

[5] D. Boneh, C. Gentry, B. Lynn, and H. Shacham.
Aggregate and verifiably encrypted signatures

from bilinear maps. In E. Biham, editor, Pro-
ceedings of Eurocrypt 2003, volume 2656 of
LNCS, pages 416–32. Springer-Verlag, 2003.

[6] D. Boneh, B. Lynn, and H. Shacham. Short
signatures from the Weil pairing. In Proceed-
ings of Asiacrypt 2001, volume 2248 of LNCS,
pages 514–32. Springer-Verlag, 2001. Full
paper: http://crypto.stanford.edu/
˜dabo/pubs.html.

[7] D. Chaum and T. Pedersen. Wallet databases
with observers. In E. Brickell, editor, Proceed-
ings of Crypto 1992, volume 740 of LNCS, pages
89–105. Springer-Verlag, 1992.

[8] J.-S. Coron. On the exact security of full do-
main hash. In M. Bellare, editor, Proceedings of
Crypto 2000, volume 1880 of LNCS, pages 229–
35. Springer-Verlag, 2000.

[9] J.-S. Coron. Security proof for partial-domain
hash signature schemes. In M. Yung, editor, Pro-
ceedings of Crypto 2002, volume 2442 of LNCS,
pages 613–26. Springer-Verlag, 2002.

[10] J.-S. Coron and D. Naccache. Boneh et al.’s
k-element aggregate extraction assumption is
equivalent to the Diffie-Hellman assumption. In
C. S. Laih, editor, Proceedings of Asiacrypt
2003, LNCS. Springer-Verlag, 2003. To appear.

[11] FIPS 186-2. Digital signature standard, 2000.

[12] G. Frey, M. Muller, and H. Rück. The Tate pair-
ing and the discrete logarithm applied to ellip-
tic curve cryptosystems. IEEE Trans. Info. Th.,
45(5):1717–9, 1999.

[13] S. Galbraith, K. Harrison, and D. Soldera. Imple-
menting the Tate pairing. In C. Fieker and D. Ko-
hel, editors, Proceedings of ANTS V, volume
2369 of LNCS, pages 324–37. Springer-Verlag,
2002.

9

[14] P. Gaudry, F. Hess, and N. Smart. Constructive
and destructive facets of Weil descent on elliptic
curves. J. Cryptology, 15(1):19–46, 2002.

[15] A. Joux and K. Nguyen. Separating decision
Diffie-Hellman from Diffie-Hellman in crypto-
graphic groups. Cryptology ePrint Archive,
Report 2001/003, 2001. http://eprint.
iacr.org/.

[16] S. Kent, C. Lynn, and K. Seo. Secure bor-
der gateway protocol (Secure-BGP). IEEE J.
Selected Areas in Comm., 18(4):582–92, April
2000.

[17] U. Maurer. Towards the equivalence of break-
ing the Diffie-Hellman protocol and computing
discrete logarithms. In Y. Desmedt, editor, Pro-
ceedings of Crypto 1994, volume 839 of LNCS,
pages 271–81. Springer-Verlag, 1994.

[18] A. Menezes, T. Okamoto, and P. Vanstone. Re-
ducing elliptic curve logarithms to logarithms in
a finite field. IEEE Trans. Info. Th., 39(5):1639–
46, 1993.

[19] S. Micali, K. Ohta, and L. Reyzin. Provable-
subgroup signatures. Unpublished manuscript,
1999.

[20] S. Micali, K. Ohta, and L. Reyzin. Accountable-
subgroup multisignatures (extended abstract). In
Proceedings of CCS 2001, pages 245–54. ACM
Press, 2001.

[21] S. Micali and R. Rivest. Transitive signature
schemes. In Proceedings of RSA 2002, volume
2271 of LNCS, pages 236–43. Springer-Verlag,
2002.

[22] A. Miyaji, M. Nakabayashi, and S. Takano.
New explicit conditions of elliptic curve traces
for FR-reduction. IEICE Trans. Fundamentals,
E84-A(5):1234–43, May 2001.

[23] K. Ohta and T. Okamoto. Multisignature
schemes secure against active insider attacks.
IEICE Trans. Fundamentals, E82-A(1):21–31,
1999.

[24] T. Okamoto. A digital multisignature scheme
using bijective public-key cryptosystems. ACM
Trans. Computer Systems, 6(4):432–41, Novem-
ber 1988.

[25] T. Okamoto and D. Pointcheval. The gap prob-
lems: A new class of problems for the security of
cryptographic primitives. In K. Kim, editor, Pro-
ceedings of PKC 2001, volume 1992 of LNCS,
pages 104–18. Springer-Verlag, 2001.

[26] R. Rivest, A. Shamir, and L. Adleman. A method
for obtaining digital signatures and public key
cryptosystems. Commun. ACM, 21:120–126,
1978.

[27] H. Shacham. Sequential aggregate signa-
tures from trapdoor homomorphic permutations.
Cryptology ePrint Archive, Report 2003/091,
2003. http://eprint.iacr.org/.

10

