
CS255: Cryptography and Computer Security Winter 2013

Assignment #3
Due: Thursday, Mar. 14, 2013, 5pm.

Problem 1 Let’s explore why in the RSA public key system each person has to be assigned
a different modulus N = pq. Suppose we try to use the same modulus N = pq for
everyone. Each person is assigned a public exponent ei and a private exponent di such
that ei · di = 1 mod ϕ(N). At first this appears to work fine: to encrypt to Bob, Alice
computes c = xebob for some value x and sends c to Bob. An eavesdropper Eve, not
knowing dbob appears to be unable to invert Bob’s RSA function to decrypt c. Let’s
show that using eeve and deve Eve can very easily decrypt c.

a. Show that given eeve and deve Eve can obtain a multiple of ϕ(N). Let us denote
that integer by V .

b. Suppose Eve intercepts a ciphertext c = xebob mod N . Show that Eve can use V to
efficiently obtain x from c. In other words, Eve can invert Bob’s RSA function.
Hint: First, suppose ebob is relatively prime to V . Then Eve can find an integer
d such that d · ebob = 1 mod V . Show that d can be used to efficiently compute x
from c. Next, show how to make your algorithm work even if ebob is not relatively
prime to V .

Note: In fact, one can show that Eve can completely factor the global modulus N .

Problem 2. Time-space tradeoff. Let f : X → X be a one-way permutation. Show that
one can build a table T of size B bytes (B � |X|) that enables an attacker to invert f in
time O(|X|/B). More precisely, construct an O(|X|/B)-time deterministic algorithm
A that takes as input the table T and a y ∈ X, and outputs an x ∈ X satisfying
f(x) = y. This result suggests that the more memory the attacker has, the easier it
becomes to invert functions.
Hint: Pick a random point z ∈ X and compute the sequence

z0 := z, z1 := f(z), z2 := f(f(z)), z3 := f(f(f(z))), . . .

Since f is a permutation, this sequence must come back to z at some point (i.e. there
exists some j > 0 such that zj = z). We call the resulting sequence (z0, z1, . . . , zj) an
f -cycle. Let t := d|X|/Be. Try storing (z0, zt, z2t, z3t, . . .) in memory. Use this table
(or perhaps, several such tables) to invert an input y ∈ X in time O(t).

Problem 3 Commitment schemes. A commitment scheme enables Alice to commit a value
x to Bob. The scheme is secure if the commitment does not reveal to Bob any infor-
mation about the committed value x. At a later time Alice may open the commitment

1

and convince Bob that the committed value is x. The commitment is binding if Alice
cannot convince Bob that the committed value is some x′ 6= x. Here is an example
commitment scheme:

Public values: (1) a 1024 bit prime p, and (2) two elements g and h of Z∗p of prime
order q.

Commitment: To commit to an integer x ∈ [0, q − 1] Alice does the following: (1)
she picks a random r ∈ [0, q− 1], (2) she computes b = gx · hr mod p, and (3) she
sends b to Bob as her commitment to x.

Open: To open the commitment Alice sends (x, r) to Bob. Bob verifies that
b = gx · hr mod p.

Show that this scheme is secure and binding.

a. To prove security show that b does not reveal any information to Bob about x. In
other words, show that given b, the committed value can be any integer x′ in
[0, q − 1].
Hint: show that for any x′ there exists a unique r′ ∈ [0, q − 1] so that b = gx

′
hr′ .

b. To prove the binding property show that if Alice can open the commitment as
(x′, r′) where x 6= x′ then Alice can compute the discrete log of h base g. In other
words, show that if Alice can find an (x′, r′) such that b = gx

′
hr′ mod p then she

can find the discrete log of h base g. Recall that Alice also knows the (x, r) used
to create b.

Problem 4. Let’s build a collision resistant hash function from the RSA problem. Let n
be a random RSA modulus, e a prime relatively prime to ϕ(n), and u random in Z∗n.
Show that the function

Hn,u,e : Z∗n × {0, . . . , e− 1} → Z∗n defined by Hn,u,e(x, y) := xeuy ∈ Zn

is collision resistant assuming that taking e’th roots modulo n is hard.

SupposeA is an algorithm that takes n, u as input and outputs a collision for Hn,u,e(·, ·).
Your goal is to construct an algorithm B for computing e’th roots modulo n.

a. Your algorithm B takes random n, u as input and should output u1/e. First, show
how to use A to construct a ∈ Zn and b ∈ Z such that ae = ub and 0 6= |b| < e.

b. Clearly a1/b is an e’th root of u (since (a1/b)e = u), but unfortunately for B, it
cannot compute roots in Zn. Nevertheless, show how B can compute a1/b. This
will complete your description of algorithm B and prove that a collision finder can
be used to compute e’th roots in Z∗n.
Hint: since e is prime and 0 6= |b| < e we know that b and e are relatively prime.
Hence, there are integers s, t so that bs+ et = 1. Use a, u, s, t to find the e’th root
of u.

2

c. Show that if we extend the domain of the function to Z∗n × {0, . . . , e} then the
function is no longer collision resistant.

Problem 5 Recall that a simple RSA signature S = H(M)d mod N is computed by first
computing S1 = H(M)d mod p and S2 = H(M)d mod q. The signature S is then found
by combining S1 and S2 using the Chinese Remainder Theorem (CRT). Now, suppose
a Certificate Authority (CA) is about to sign a certain certificate C. While the CA
is computing S1 = H(C)d mod p, a glitch on the CA’s machine causes it to produce
the wrong value S̃1 which is not equal to S1. The CA computes S2 = H(C)d mod q
correctly. Clearly the resulting signature S̃ is invalid. The CA then proceeds to publish
the newly generated certificate with the invalid signature S̃.

a. Show that any person who obtains the certificate C along with the invalid signature
S̃ is able to factor the CA’s modulus.
Hint: Use the fact that S̃e = H(C) mod q. Here e is the public verification
exponent.

b. Suggest some method by which the CA can defend itself against this danger.

Problem 6. Recall that Lamport signatures are one-time signatures built from a one-way
function f . Key generation outputs a public key containing O(n) points in the image
of f . A signature on an n-bit message is a set of O(n) pre-images of certain points in
the public key.

Show that the length of Lamport signatures can be reduced by a factor of t at the
cost of expanding the public and secret keys by a factor of at most 2t. Make sure to
describe your key generation, signing, and verification algorithms.
Hint: Think of signing t bits of the message at a time (as opposed to one bit at a
time).

In fact, one can shrink the size of Lamport signatures by a factor of t without expanding
the public key. This is a little harder and we won’t discuss it here.

3

