
CS255: Cryptography and Computer Security Winter 2006

Assignment #3
Due: Wednesday, Mar. 7th, 2007.

Problem 1 Conference key setup.
Parties A1, . . . , An and B wish to generate a secret conference key. All parties should
know the conference key, but an eavesdropper should not be able to obtain any in-
formation about the key. They decide to use the following variant of Diffie-Hellman:
there is a public prime p and a public element g ∈ Z∗

p of order q for some large prime q
dividing p−1. User B picks a secret random b ∈ [1, q−1] and computes y = gb mod p.
Each party Ai picks a secret random ai ∈ [1, q− 1] and computes xi = gai mod p. User
Ai sends xi to B. User B responds to party i by sending zi = xb

i mod p.

a. Show that party i given zi (and ai) can determine y.

b. Explain why (a hash of) y can be securely used as the conference key. Namely,
explain why at the end of the protocol all parties A1, . . . , An and B know y and
give a brief informal explanation why an eavesdropper cannot determine y.

c. Prove part (b). Namely, show that if there exists an efficient algorithm A that
given the public values in the above protocol, outputs y, then there also exists an
efficient algorithm B that breaks the Computational Diffie-Hellman assumption
(using p and g as the public values). Use algorithm A as a subroutine in your
algorithm B. Note that algorithm B takes ga mod p and gb mod p as input and
should output gab mod p.

Problem 2 Let’s explore why in the RSA public key system each person has to be assigned
a different modulus N = pq. Suppose we try to use the same modulus N = pq for
everyone. Each person is assigned a public exponent ei and a private exponent di such
that ei · di = 1 mod ϕ(N). At first this appears to work fine: to encrypt a message
to Bob, Alice computes C = M ebob and sends C to Bob. An eavesdropper Eve, not
knowing dbob appears to be unable to decrypt C. Let’s show that using eeve and deve

Eve can very easily decrypt C.

a. Show that given eeve and deve Eve can obtain a multiple of ϕ(N).

b. Show that given an integer K which is a multiple of ϕ(N) Eve can factor the
modulus N . Deduce that Eve can decrypt any RSA ciphertext encrypted using
the modulus N intended for Alice or Bob.
Hint: Consider the sequence gK , gK/2, gK/4, . . . gK/τ(K) mod N where g is random
in ZN and τ(N) is the largest power of 2 dividing K. Use the the left most element
in this sequence which is not equal to ±1 mod N .

1



Problem 3. Collision resistant hashing.

a. Let p be a prime and let g ∈ Z∗
p be an element of prime order q. We let G denote

the group generated by g and we let I denote the set of integers {1, . . . , q}. Pick
random values g, h ∈ G and define the compression function H1 : I2 → G as

H1(x, y) = gxhy ∈ G

Show that H1 is collision resistant assuming discrete-log in G is intractable. That
is, show that an attacker capable of finding a collision for H1 for random g, h ∈ G
can be used to compute discrete-log in G.
Hint: given a pair u, v ∈ G your goal is to find an α ∈ Z such that uα = v. Choose
g, h ∈ G so that a collision on the resulting H1 will reveal α.

b. Pick random n-bit primes p, q and let N = pq. Let I = {1, . . . , N2}. Pick a random
element g ∈ Z∗

N and define the compression function H : I → G as

H2(x) = gx ∈ ZN

Show that H2 is collision resistant assuming factoring 2n-bit RSA moduli is in-
tractable. That is, show that an attacker capable of finding a collision for H2 for
random p, q, g can be used to factor N . You may rely on part (b) of Problem 2.

Problem 4 Recall that a simple RSA signature S = H(M)d mod N is computed by first
computing S1 = H(M)d mod p and S2 = H(M)d mod q. The signature S is then found
by combining S1 and S2 using the Chinese Remainder Theorem (CRT). Now, suppose
a Certificate Authority (CA) is about to sign a certain certificate C. While the CA
is computing S1 = H(C)d mod p, a glitch on the CA’s machine causes it to produce
the wrong value S̃1 which is not equal to S1. The CA computes S2 = H(C)d mod q
correctly. Clearly the resulting signature S̃ is invalid. The CA then proceeds to publish
the newly generated certificate with the invalid signature S̃.

a. Show that any person who obtains the certificate C along with the invalid signature
S̃ is able to factor the CA’s modulus.
Hint: Use the fact that S̃e = H(C) mod q. Here e is the public verification
exponent.

b. Suggest some method by which the CA can defend itself against this danger.

Problem 5. Offline signatures. One approach to speeding up signature generation is to
perform the bulk of the work offline, before the message to sign is known. Then, once
the message M is given, generating the signature on M should be very fast. Our goal
is to design a signature system with this property.

a. Does the RSA Full-Domain-Hash (FDH) signature system enable this form of of-
fline signatures? In other words, can we substantially speed-up RSA signature
generation if we are allowed to perform offline computation before the message
M is given?

2



b. Our goal is to show that any signature system can be converted into a signature
where the bulk of the signing work can be done offline. Let (KeyGen, Sign, Verify)
be a signature system (such as RSA FDH) and let G be a group of order q
where discrete log is hard. Consider the following modified signature system
(KeyGen′, Sign′, Verify′):
• The KeyGen′ algorithm runs algorithm KeyGen to obtain a signing key SK

and verification V K. It also picks a random group element g ∈ G and sets
h = gα for some random α ∈ {1, . . . , q}. It outputs the verification key
V K ′ = (V K, g, h) and the signing key SK ′ = (V K ′, SK, α).

• The Sign′(SK ′, M) algorithm first picks a random r ∈ {1, . . . , q}, computes
m = gMhr ∈ G, and then runs Sign(SK, m) to obtain a signature σ. It
outputs the signature σ′ = (σ, r).

• The Verify′(V K ′, M, σ′) algorithm, where σ′ = (σ, r), computes m = gMhr ∈
G and outputs the result of Verify(V K, m, σ).

show that the bulk of the work in the Sign′ algorithm can be done before the
message is given.
Hint: First, observe that since α is part of the secret key SK ′, the signer can
compute m = gMhr as m = gM+αr. Now, offline, try running Sign(SK, m) on
a message m = gs for a randomly chosen s ∈ {1, . . . , q}. Let σ be the resulting
signature. Then, once the message M is given, show that the signer can eas-
ily convert σ into a valid signature σ′ for M using only one addition and one
multiplication modulo q.

c. (extra credit) Prove that the modified signature scheme is secure. In other words,
show that an existential forger under a chosen message attack on the modified
scheme gives an existential forger on the underlying scheme. You may use the fact
(proved in problem 3) that H(M, r) = gMhr is a collision resistant hash function
and hence the adversary cannot find collisions for it.

Problem 6 Access control and file sharing using RSA. In this problem N = pq is some RSA
modulus. All arithmetic operations are done modulo N .

a. Suppose we have a file system containing n files. Let e1, . . . , en be relatively prime
integers that are also relatively prime to ϕ(N), i.e. gcd(ei, ej) = gcd(ei, ϕ(N)) = 1
for all i 6= j. The integers e1, . . . , en are public. Let R ∈ Z∗

N and suppose each
file Fi is encrypted using the key keyi = R1/ei .

Now, let S ⊆ {1, . . . , n} and set b =
∏

i∈S ei. Suppose user u is given Ku = R1/b.
Show that user u can decrypt any file i ∈ S. That is, show how user u using Ku

can compute any key keyi for i ∈ S.

This way, each user uj can be given a key Kuj
enabling it to access those files to

which it has access permission.

b. Next we need to show that using Ku user u cannot compute any key keyi for i 6∈ S.
To do so we first consider a simpler problem. Let d1, d2 be two integers relatively

3



prime to ϕ(N) and relatively prime to each other. Suppose there is an efficient
algorithm A such that A(R,R1/d1) = R1/d2 for all R ∈ Z∗

N . In other words, given
the d1’th root of R ∈ Z∗

N algorithm A is able to compute the d2’th root of R.
Show that there is an efficient algorithm B to compute d2’th roots in Z∗

N . That
is, B(X) = X1/d2 for all X ∈ Z∗

N . Algorithm B uses A as a subroutine.

c. Show using part (b) that user u cannot obtain the key keyi for any i 6∈ S assuming
that computing e’th roots modulo N is hard for any e such that gcd(e, ϕ(N)) = 1.
(the contra-positive of this statement should follow from (b) directly).

4


