Lecture8, (Thursday(4/26/01
Hashing{IChapter([12)

e Heaps support:
» Insert
» Delete
» Max/min

e How about Search ?
(How would you implement “find” in a heap ?)

o Possible solutions:

» Ordered array: slow “insert” - Q(n).
» Ordered list: both find and insert are slow !

74

Directl@ddressiable

x if xeT, key(x) =i

e Maintain table T[i]T[I]:[® otharwise

e Disadvantage: too much memory !

o Idea: maintain small table:

75

Collisions

® | Table | << | Universe of keys | - collisions |
(collision= two keys map into the same slot in T)

e How to resolve collisions:

» Chaining:
WhatisFnext’ (2

» Open addressing: if A[h(x)] full - try next slot.

76

AnalysisloflChaining

e Assume each key equally likely hashed to any slot.

n "
® n keys, m slots; o=;=loadfactor

n

o Expected length of a chain: Z%ﬁ%w
= [AccessTimeZO(+a)

® Unsuccessful search:
Expected length of a randomly chosen list +1: [©(l+a)

7

Successful$earch

Expected time to find /th element = time to insert /~th
element

Assume that the key being searched for is equally likely to be
any one of the keys stored.

Conditioned on “key was the /~th element inserted”,

expected time = [h%J

N 1, i1 g, 1 &
overal ﬁ; 1+ﬁ 71+%;[| 1]
- 1nn-D_q,a 1 _
=1+ 0 =14 S =01+)
o Intuition: need to search 1/2 of a list on the average.

78

Openl[Addressing

o If A[h(x)] full, try "next” slot.
e Linear probing:
» pick some integer b relatively prime to size of table m.

»For i=0,1,2,3,.. trytoplace x in position:
h(x)FDB-ilod

» Bad idea: results in large clusters.
Increased search time and insert time as a—1.

® Double hashing: works well in practice.
» Pick two hash functions hy, h,
» For i=0,1,2,3,... try to place x in position:
h,(x)Fih,(x) hodn

79

Analysislof(OpenlAddressing

o Simplifying assumption: h(key, probe #), random and
uniform.

® Probability that at least i probes lead to already
occupied slots ? [

e Expected # probes in unsuccessful search:

1+ Prlexadllyi probes] =1+3'q =1+3 e =L

1

80

Morelopenladdressing

[————
e What about successful search ?
Depends on the element: element inserted earlier will be
easier to find |

e Assume uniform distribution on the element we search for.
If element was inserted at (i-1)-th step, expected number
of probes was < 1 M

1-L

e Condition on i, take expectation:

But: Ini<H, <Ini+1
Thus(éxpected HEprobes:

Sé[lnmﬂ—ln(m— n)}:%[lnmiﬂ}:f[lnfﬂ}

81

