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Hashing�(Chapter�12)

Heaps support:
» Insert

» Delete

» Max/min

How about Search ?
(How would you implement “find” in a heap ?)

Possible solutions:
» Ordered array: slow “insert” - Ω(n).

» Ordered list: both find and insert are slow !

Lecture�8,�Thursday�4/26/01

75

Direct�address�table

Maintain table T[i]:

Disadvantage: too much memory !

Idea: maintain small table:
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Collisions

| Table | << | Universe of keys |    - collisions !
(collision= two keys map into the same slot in T)

How to resolve collisions:
» Chaining:

» Open addressing: if A[h(x)] full - try next slot.

What�is�“next”�?
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Analysis�of�Chaining

Assume each key equally likely hashed to any slot.

n keys, m slots;

Expected length of a chain:

Unsuccessful search: 
Expected length of a randomly chosen list +1:
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Successful�Search

Expected time to find i-th element = time to insert i-th
element

Assume that the key being searched for is equally likely to be
any one of the keys stored.

Conditioned on “key was the i-th element inserted”,

expected time = 

overall:

Intuition: need to search 1/2 of a list on the average. 
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Open�Addressing

If  A[h(x)]  full,  try “next” slot.

Linear probing:

» pick some integer  b  relatively prime to size of table m.

» For  i = 0, 1, 2, 3, … try to place  x  in position:
h(x)�+�b·i��mod�m

» Bad idea:  results in large clusters.  
Increased search time and insert time as   α→1.

Double hashing: works well in practice.

» Pick two hash functions  h
1
, h

2

» For  i = 0, 1, 2, 3,… try to place x in position:
h1(x)�+�i·h2(x)��mod�m
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Analysis�of�Open�Addressing

Simplifying assumption: h(key, probe #), random and 
uniform.

Probability that at least i probes lead to already 
occupied slots ?

Expected # probes in unsuccessful search:
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More�open�addressing

What about successful search ?   
Depends on the element: element inserted earlier will be 
easier to find !

Assume uniform distribution on the element we search for.
If element was inserted at (i-1)-th step, expected number 
of probes was 

Condition on i, take expectation:
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